等比數列的前n項和教學(xué)設計
等比數列的前n項和教學(xué)設計
一、教材分析:
等比數列的前n項和是高中數學(xué)必修五第二章第3.3節的內容。它是“等差數列的前n項和”與“等比數列”內容的延續。這部分內容授課時(shí)間2課時(shí),本節課作為第一課時(shí),重在研究等比數列的前n項和公式的推導及簡(jiǎn)單應用,教學(xué)中注重公式的形成推導過(guò)程并充分揭示公式的結構特征和內在聯(lián)系。意在培養學(xué)生類(lèi)比分析、分類(lèi)討論、歸納推理、演繹推理等數學(xué)思想。在高考中占有重要地位。
二、教學(xué)目標
根據上述教學(xué)內容的地位和作用,結合學(xué)生的認知水平和年齡特點(diǎn),確定本節課的教學(xué)目標如下:
1.知識與技能:理解等比數列的前n項和公式的推導方法;掌握等比數列的前n項和公式并能運用公式解決一些簡(jiǎn)單問(wèn)題。
2.過(guò)程與方法:通過(guò)公式的推導過(guò)程,提高學(xué)生的建模意識及探究問(wèn)題、類(lèi)比分析與解決問(wèn)題的能力,培養學(xué)生從特殊到一般的思維方法,滲透方程思想、分類(lèi)討論思想及轉化思想,優(yōu)化思維品質(zhì)。
3.情感與態(tài)度:通過(guò)自主探究,合作交流,激發(fā)學(xué)生的求知欲,體驗探索的艱辛,體味成功的喜悅,感受思維的奇異美、結構的對稱(chēng)美、形式的簡(jiǎn)潔美、數學(xué)的嚴謹美。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):等比數列的前項和公式的推導及其簡(jiǎn)單應用。
難點(diǎn):等比數列的前項和公式的推導。
重難點(diǎn)確定的依據:從教材體系來(lái)看,它為后繼學(xué)習提供了知識基礎,具有承上啟下的作用;從知識本身特點(diǎn)來(lái)看,等比數列前n項和公式的推導方法和等差數列的的前n項和公式的推導方法可比性低,無(wú)法用類(lèi)比的方法進(jìn)行,它需要對等比數列的概念和性質(zhì)能充分理解并融會(huì )貫通;從學(xué)生認知水平來(lái)看,學(xué)生的探究能力和用數學(xué)語(yǔ)言交流的能力還有待提高。
四、教法學(xué)法分析
通過(guò)創(chuàng )設問(wèn)題情境,組織學(xué)生討論,讓學(xué)生在嘗試探索中不斷地發(fā)現問(wèn)題,以激發(fā)學(xué)生的求知欲,并在過(guò)程中獲得自信心和成功感。強調知識的嚴謹性的同時(shí)重知識的形成過(guò)程。
五、教學(xué)過(guò)程
(一)創(chuàng )設情境,引入新知
從故事入手:傳說(shuō),波斯國王下令要獎賞國際象棋的發(fā)明者,發(fā)明者對國王說(shuō),在棋盤(pán)的第一格內放上一粒麥子,在第二格內放兩粒麥子,第三格內放4粒,第四格內放8米,……按這樣的規律放滿(mǎn)64格棋盤(pán)格。結果是國王傾盡國家財力還不夠支付。同學(xué)們,這幾粒麥子,怎能會(huì )讓國王賠上整個(gè)國家的財力?
關(guān)鍵就在于計算麥粒的總數。很明顯,這是一個(gè)以1為首項,以2為公比的等比數列前64項和的問(wèn)題,即如何計算1+2+22+……+263?
(二)師生討論、探究新知
總結歸納:當q=1時(shí),Sn=na1
當q≠1時(shí),
公式說(shuō)明:①對等比數列{an}而言,a1,an,Sn,n,q知三可求二②運用公式時(shí)要根據條件選取適當的公式,特別注意的是,在公比不知道的情況下要分類(lèi)討論;③錯位相減的思想方法。
(三)例題講解,形成技能
例1:等比數列{an}中,
①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn
③已知a1=2,S3=26,求q。
通過(guò)例題一,滲透知三求二的思想。
練習:求等比數列1,-1/2,1/4,-1/8,…,-1/512的各項的和。
例2. 等比數列{an}中,已知a1=3,S3=9,求q,an。
練習:等比數列{an}中,若S3=7/2,S6=63/2,求an、S9。
通過(guò)練習得出等比數列前項和的一個(gè)性質(zhì):成等比數列。
例3:(1)求數列1+1/2,2+1/4,3+1/8,… n+,…的前n項和。
首先由學(xué)生分析思路,觀(guān)察出這組數列的特點(diǎn),它既不是等差數列,也不是等比數列,而是等差加等比。歸納出這類(lèi)數列求和的方法。
思考:求和:1+a+a2+a3+…+an
(四)課堂小結
以問(wèn)題的形式出現,引導學(xué)生回顧公式、推導方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數學(xué)思想方法兩方面總結。
『設計意圖:以此培養學(xué)生的口頭表達能力,歸納概括能力。』
六、板書(shū)設計略
七、課后記
本節課的設計體現呢“以學(xué)生為主體,教師是課堂活動(dòng)的組織者、引導者和參與者”的現代教育理念。在教學(xué)的每一個(gè)環(huán)節中軍設計了問(wèn)題,始終以教師提出問(wèn)題,引導學(xué)生解決問(wèn)題的方式進(jìn)行,讓課堂活動(dòng)變得生動(dòng)而愉悅。
【等比數列的前n項和教學(xué)設計】相關(guān)文章:
教學(xué)設計的依據和原則11-10
《因數和倍數》優(yōu)秀教學(xué)設計(精選6篇)04-17
《d、t、n、l》教學(xué)反思(精選10篇)09-28
《多邊形的內角和》的教學(xué)設計(精選11篇)04-13
面積和周長(cháng)的比較優(yōu)秀教學(xué)設計(精選10篇)05-09
《標牌設計》的教學(xué)設計03-14